
Max Little,
Aston University

Nick Jones,
Imperial College

Highly comparative time-series 
analysis

Paris School of Economics, Nov 2015



The art of time-series analysis

1. Measure data

2. Inspect data 
thoroughly, talk to 

domain experts, and 
manually devise 

appropriate models and 
methods based on 

intuition and 
experience

“Apply a hot new method I read about in Nature”

“Do what I did during my PhD”

“Use standard analysis methods from my field”



Worries

• Is your proposed method best, or can another 
(perhaps simpler) method outperform it?

• Are new methods really new, or do they reproduce 
the performance of existing methods (e.g., from 
another field, or developed in the past)?

• Papers introducing a new method compare their 
method to an average of 0.91 others, and 1.85 
different datasets*.

*Keogh, E. and Kasetty, S., Data Min. Knowl. Disc. 7, 349 (2003)



Competing interdisciplinary approaches/opinions

“Everyone knows 
you can’t apply
AR time-series 

models to 
nonstationary 

biomedical data!”

“ARIMA models
are a waste

of time”

“I know 
someone 

smart who 
uses wavelets”

vast and growing volumes of data and methods



Scientific endeavors often focus on structuring 
libraries of collected information.

Structuring

Substances Life forms

Food

Matter

Helps us to understand
the complexity in the world



Structuring science

• Machine learning techniques allow us to 
find structure in collections of data on a 
greater scale than ever before.

• Our aim: to find structure in scientific 
time-series data and analysis methods.



First we collect

Butterfly collectionFrolicking in field with net

What about our data? What about our methods?Less fun, but also important:

e.g.:

before you
know it

This dude is measuring crops This dude is measuring sound waves



What time series?
dynamical systems

text: sentence lengths

zooplankton growth

AR processes

medical: normal sinus rhythm

hydrology

finance: oil prices

noise

SDEs

climatology: sea level pressure

medical CO2 fluctuations

audio: brushing teeth

atmospheric CO2 fluctuations

satellite position

> 30 000



Analysis methods
Correlation

Linear autocorrelation

Nonlinear autocorrelations

Decay properties

Time reversal asymmetry
Generalized self-correlation

Additive noise titration

(Phys) Nonlinear

Recurrence structure
Autocorrelation robustness

Model fits

2D embedding structure

Stationarity
StatAv

Bootstraps
Sliding window measures

Scaling and fluctuation analysis

Distribution comparisons

Basis Functions
Wavelet transform

Spectral measures
Biased walker
simulations

Permutation robustness

Local prediction

Peaks of power spectrum

Power in frequency bands

Static distribution
Quantiles

Moments

Fits to standard distributions

Local extrema

AR models
Fourier fits

Exponential smoothing

GARCH models

Hidden Markov models

Gaussian Processes

TISEAN

TSTOOL

Nonlinear prediction error

Correlation dimension

Fractal dimension

Poincaré sections Surrogate data

Lyapunov exponent estimate

Piecewise splines

False nearest neighbors

State space models

ARMA models

Others
Transition matrices

Dynamical system coupling

Stick angle distribution
Visibility graph

Extreme events

Local motifs

Step detection

Singular spectrum analysis

Seasonality tests

Domain-specific techniques

Taken’s estimator

Rank-orderings

Outliers

Trimmed means

Standard deviation

Zero crossing rates

Information Theory

Entropy rate

Sample Entropy

Approximate 
EntropyTsallis entropies

Automutual information

Entropy



stochastic processes

share prices

dynamical systems

EEGs

space recordings

heart beat intervals

air temperature

rainfall

random numbers

audio

maps

autoregressive processes

ECGs

Time series
feature vectors nonlinear

prediction
error

wavelet
coefficients

fluctuation
analysis

distributional
moment

dimension
estimate

power
spectrum
measure

sliding
window

stationarity

AR
model

fit
Sample
Entropy

Operations
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Time-series analysis 101: 
always look at your data





A flexible, powerful, and data-driven means of comparing time 
series, and analysis methods.

Empirical fingerprints

 =  operation of type ‘blue’ = time series of type ‘green’
captures behaviour across a range
 of empirical time series

captures properties measured
by diverse scientific methods



Organizing our methods
Which time-series analysis methods

are similar to the methods I use?

Connects scientific methods using
their empirical behaviour

a pair of similar methods 
from a distant literature

an unexpected
method with similar
behaviourmy favourite

analysis method



Local neighborhoods

Automatically find
interdisciplinary

connections
between our methods

for time-series
analysis

ApEn(2,0.2)

Automutual
Information

Shannon
Entropy

Lempel-Ziv
Complexity

Randomized
Sample Entropy

Sample Entropy

Approximate
Entropy



Organizing our data
What types of real-world and

model-generated time series are
similar to my data?

matching model-generated data

matching real data

my favourite
time series



Clusters of time 
series

group systems
with common 

dynamics



Cubic map
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Fishing for data
Can gain insights into your data by 
comparing it to a wealth of data collected in 
other areas of science



suggest models, or similar real-world processes to our data

Fishing for data



Brings our data
and models 

closer
together

sine wave
(longer period)

sine wave
(longer period)

Jerk system

speech phoneme

speech phoneme

satellite position

EEG: seizure

EEG: seizure

Hadley flow

Rössler flow

noisy sine wave
(η=0.22)
noisy sine wave
(η=0.19)

noisy sine wave
(η=0.26)
noisy sine wave
(η=0.17)
noisy sine wave
(η=0.2, T=25)

monthly
temperature

phoneme

vibrating phone
sound effect

monthly air
pressure

space:
ionosophere

noisy sine wave
(η=0.72)

daily magnetic
field

relative
humidity

EEG

music

animal sound

noisy sine wave
(η=0.45)

noisy sine wave
(η=0.80, T=25)

noisy sine wave
(η=0.60, T=25)

noisy sine wave
(η=0.60, T=50)

noisy sine wave
(η=2.1)

noisy sine wave
(η=1.6, T=50)

AR(8) process

MA(9) process

Gaussian noise

monthly rainfall

meat slicer
audio

phoneme

relative humidity

finance: high-low
log returns

(a) (b)

(c) (d)



Is there any structure in my
time-series dataset?

clusters of similar time series



EEGs

set A

set B

set C

set D

set E

 

 
Principal Components projection



Highly comparative time-series analysis

1. Compute and compare 
thousands of analysis 

methods

2. Select methods that 
perform well on your data

3. Interpret new methods 
to gain insights into your 

data

dataset

Thousands of analysis ‘operations’

entropy DFA ARMA
coeffs

“Signals from the patient group are less predictable”

“Single neuron recordings from region X have more outliers 
and intermittent fluctuations”

“...”

C

 

 
control

patient

EEG entropy in pre-frontal cortexBD Fulcher, MA Little, and NS Jones. J. R. Soc. Interface, 10:83 (2013), DOI: 10.1098/rsif.2013.0048
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seizure

no seizure
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location

control
entropies

pNNx

linear
models

scaling
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Applications

BD Fulcher, MA Little, and NS Jones. J. R. Soc. Interface, 10:83 (2013), DOI: 10.1098/rsif.2013.0048
BD Fulcher,  AE Georgieva, C Redman, NS Jones, Annual International Conference of the IEEE, EMBC, 3135 (2012), DOI: 10.1109/EMBC.2012.6346629

BD Fulcher, NS Jones. IEEE KDE (2014), DOI: 10.1109/TKDE.2014.2316504

•Seismic data

•Simulated chaos

•Fetal heart rate

•Heart rate intervals

•Parkinsonian speech

•Epileptic EEGs

•Emotional speech

http://dx.doi.org/10.1109/TKDE.2014.2316504


Identifying emotions in German speech



Classifying seizures
 

no seizure

seizure
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Diagnosis of fetal heart rates
Arterial(and(venous(blood(samples(

http://www.k2ms.com/ 

Fulcher, B.D. and Georgieva, A. E. and Redman, C. W G and Jones, N. S., Annual International Conference of the IEEE, EMBC, 3135 (2012), DOI: 10.1109/EMBC.2012.6346629
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Heart rate variability



Parkinsonian speech

mean of inertial particle trajectory (20%)
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Classifiers combine methods developed in different scientific disciplines
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Self-affine time series



Logistic Map

logistic maps:
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Lyapunov exponent,  of logistic map

Automutual information decay rate
with added Gaussian noise

(h)



Time-series data mining
Cluster and classify short time-series ‘patterns’ (functional data)

Distances between
temporal objects

A Distances between sets
of extracted features

i. Time series

ii. Extensive
feature vector

iii. Reduced
feature vector

1000s features

e.g., 10 selected features e.g., 10 selected features

1000s features

B

B. D. Fulcher & N. S. Jones, Highly comparative feature-based time-series classification. IEEE Trans. Knowl. Data Eng. 26, 3026–3037 (2014)



Swedish Leaf
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−8 −6 −4 −2 0 2

Training (100 time series)

Test (100 time series) Test (100)

Training (100)

0 0.05 0.1 0.15 0.2 0.25
‘Decrease-increase-decrease-increase’ motif frequency

A

B

C

D

Training (1000 time series)

Test (6164 time series)

Trace dataset Wafer dataset

trev (τ = 3)

Single features perform well
would be difficult to motivate by intuition
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t: 1-NN DTW with
best warping window

t: 1-NN DTW

t: 1-NN Euclidean

test
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Improvements by adding a second feature
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1-NN DTW with best warping window

1-NN DTW

1-NN Euclidean

test

training

Number of features selected

massive dimensionality
reduction

automatic

diverse, interpretable features

fast classification of new examples

B. D. Fulcher & N. S. Jones, Highly comparative feature-based time-series classification. IEEE Trans. Knowl. Data Eng. 26, 3026–3037 (2014)

Improvements by adding multiple features



www.comp-engine.org/timeseries

• Web resource for interdisciplinary scientific 
collaboration on time-series analysis

• >32,000 views since launching in February 2014

• Explore relationships between ~30,000 time series 
and ~9,000 analysis operations

• alpha implementation of drag-and-drop

http://www.comp-engine.org/timeseries


www.comp-engine.org/timeseries

http://www.comp-engine.org/timeseries


Matlab-based code repository
@compTimeSeries



Conclusions

• A semi-automated approach to time-series analysis 
that compares thousands of interdisciplinary methods

• Can be viewed as a starting point to guide more 
focused time-series analysis

• Results provide insights into underlying dynamical 
mechanisms

ben.fulcher@monash.edu

B. D. Fulcher, M. A. Little, and N. S. Jones. J. R. Soc. Interface, 10:83 (2013), DOI: 10.1098/rsif.2013.0048
www.comp-engine.org/timeseries

@bendfulcher, @compTimeSeries


